Paco,
You can use a gated pulse train, which is similar to finite pulse train generation. With finite pulse train generation, you have one pulse for the gate of a counter set to generate a pulse train. The pulse train will only be output based on the gate, so if one pulse appears, you have a finite pulse train. Now, if you make the gate be a pulse train itself, then you can continuously output bursts of pulses. For instance, you can set it up such that the pulses are output when the gate is high. When the gate is low, the counter pulses would pause and when the gate resumes to the high states, your pulses would continue. I've attached a code excerpt for using NI-DAQ function calls to generate a finite pulse train that is in our database. I will see abo
ut getting it put onto the http://www.ni.com/support pages. You can also find more information about the function calls used by referencing the NI-DAQ Help file installed with the NI-DAQ driver software and with the NI-DAQ User Manual, which is available at the web pages.
Regards,
Geneva L.
Applications Engineering
National Instruments
http://www.ni.com/ask