Data Acquisition Idea Exchange

Community Browser
Top Authors
cancel
Showing results for 
Search instead for 
Did you mean: 
Post an idea

Multiple people have requested that there be a natural way for Labview and SignalExpress to do a rotational speed measurement using a quadrature encoder. An express VI under "Acquire Signals>>Counter Input>>Rotational Speed" that asks you basic quadrature encoder type questions and computes the rotational speed would be very useful. The information it asks would be things such as Ticks per Revolution, Decoding type (x1, x2, x4) would be useful in computing rotational speed. In addition, this can be then converted into a shipping example for DAQmx relatively easily. I have had multiple people ask this question and believe that especially within SignalExpress, this would be very useful.

 

 

Rotation.png

 

 

Hi

 

I'd like to see PCI express versions of existing PCI Analogue Output cards eg PCI6713 and PCI6733.

 

I'm finding it quite difficult (and quite a bit more expensive) to source desktop PCs featuring PCI slots.

 

 

NI should make sure that the measurement uncertainty specifications for its DAQ hardware are aligned with uncertainty analyses that are performed according the ISO "Guide to the expression of Uncertainty in Measurement" (GUM). See http://www.bipm.org/en/publications/guides/gum.html. Furthermore, the language used could conform to the ISO "International Vocabulary of Metrology" (VIM). See http://www.bipm.org/en/publications/guides/vim.html.

Currently when streaming analog or digital samples to DAQ board, output stays at the level of last sample received when buffer underflow occurs. This behavior can be observed on USB X Series Multifunction DAQ boards. I have USB-6363 model. The exact mode is hardware-timed, buffered, continuous, and non-regenerating. The buffer underflow error code is -200290 “The generation has stopped to prevent the regeneration of old samples. Your application was unable to write samples to the background buffer fast enough to prevent old samples from being regenerated.”

 

I would like to have an option to configure DAQ hardware to immediately set voltage on analog and digital outputs to a predefined state if the buffer underrun occurs. Also, I would like to have an option to immediately set one of PFI pins on buffer underrun.  

 

I believe this could be accomplished by modifying X series firmware and providing configuration of this feature in the DAQmx API. If no more samples are available in the buffer the DAQ board should immediately write predefined digital states / analog levels to outputs and indicate buffer underrun state on PFI line. Then it should report error to PC.

 

Doing this in firmware has certain advantages:

  1. It can be done quickly (possibly within the time of the next missing sample – at 2Ms/s that’s 0.5us).
  2. Handles all situations (software lockups, excessive CPU loading by other processes, loss of communication do to bus traffic, interface disconnection…)
  3. It does not require any additional hardware (to turn off outputs externally).
  4. Buffer underrun indication on PFI line could provide additional safety measure (it could be used for example to immediately disable external power amplifier connected to DAQ AO). 

Doing this using other methods is just too slow, does not handle all situations, or requires additional external circuitry.

 

Setting outputs from software, once error occurs, is slow (~25ms / time of 50000 samples at 2MS/s) and does not handle physical disconnection of the interface. Analog output does eventually go to 0 V on USB-6363 when USB cable is disconnected, but it takes about half a second.  

 

Using watchdog timer would also be too slow. The timer can be set to quite a short time, but form the software, I would not be able to reset it faster than every 10ms. It also would require switching off analog channels externally with additional circuitry, because watchdog timer is not available for analog channels.

 

The only viable solution right now is to route task sample clock to PFI and detect when it stops toggling. It actually does stop after last sample is programmed. Once that occurs, outputs can be switched off externally. This requires a whole lot of external circuitry and major development time. If you need reaction time to be within time of one or two samples, pulse detector needs to be customized for every possible sampling rate you might what to use. To make this work right for analog output, it would take RISC microcontroller and analog electronic switches. If you wanted to use external trigger to start the waveform, microcontroller would have to turn on the analog switch, look for beginning of waveform sample clock, record initial clock interval as reference, and finally turn off the switch if no pulse is received within reference time.

 

I’m actually quite impressed how well USB-6363 handles streaming to outputs. This allows me to output waveforms with complexity that regular arbitrary generators with fixed memory and sequencing simply cannot handle. The buffer underflow even at the highest sampling rate is quite rare. However, to make my system robust and safe, I need fast, simple, and reliable method of quickly shutting down the outputs that only hardware/firmware solution can provide.

 

Thanks,

Sebastian

In dealing with multiple projects and systems that each have different sets of tasks in MAX, I think it would be very handy if you could make virtual folders in the directory style listing under "NI-DAQmx Tasks" - that way you could folder up tasks by project or section of a project instead of having a long list of task names.

 

Anyone else think this would be helpful? or might it cause an issue in some way?

 

-pat

When it comes to documentation of an measurement, you need to report ALL settings of a device that effects that measurement.

From a core memory dump written as a hex string to a XML document.... anything that shows up a difference in the settings that affect the measurement would be fine for documentation.

Something like a big property node readout followed by a format into string .... but make sure not to miss a property.... and a bit more complicated when it comes to signal routing....

 

A measurement that isn't sufficiently documented is all for naught. 

or

Just think of a nasty auditor 😉

 

It's so easy to make measurements with LabVIEW, please make it easy and consistent to document it.

 

Example:

A quick measurement setup with the DAQ-assistant/Express fills Gigabytes but after a certain time they are useless because nobody knows how they where taken. A simple checkbox could add all this information in the variant of the waveform. (or TDMS or ...) even if the operator don't have a clue of all the settings that affect his measurements.

 

There is currently no API available to develop applications that will use the functionality of the GPIB Analyzer. There are customers who would like to be able to monitor the GPIB bus from LabVIEW, so this would be helpful.

Would like to be able to collect a couple channels of analog inputs to the iPad.  This is nice but I need a minimum of 2 analog inputs and I would rather have NI:  http://www.oscium.com/

 

Response from coorporate:

"We don't currently have anything that would meet the customer's requirement of being able to plug in directly into the iPad for data acquisition.

I don't believe that the iPad supports Silverlight which is a framework developed by Microsoft.  Also, wireless DAQ has to communicate with a host running DAQmx, so the customer would still need a 2nd computer even if using wireless DAQ.

If you want to connect data acquisition hardware (of any form-factor) to a machine running LabVIEW and DAQmx,  then use LabVIEW Web Services to publish the front panel to the web and view/control it from his iPad.

We do have several USB products that will work with Windows-based netbooks that could be an alternative solution if topic is open to a non-Apple platform.  For example, the 5132/5133 are bus-powered digitizers with much higher sample rate, bandwidth, and buffer size compared to the Oscium device.  However, the price is also quite a bit higher."

I am using DAQmx Physical channel controls in user Interface to select the particular DAQ modules.I would like to display only the particular type (AI,DI,AO,DO.....) of modules which is connected in the system.For example i need to display only, DO-NI-9477 cDAQ modules in the physical channel not the other DIO models like NI 9403...IO name filtering option not useful to filter the other models which is same type.

 

That should be great if NI provides the option for filtering the modules name based on their  product type or user configurable naming (for example, if cDAQ1 device renamed as "DEV1" means user can enter filter the device based on the string "DEV").

I would like to have an programmable gain amplifier in the analog output path that I can use to adjust the amplitude of an output signal.  In control applications, this would be much better than having to stop a continuous task, reload the data with a new amplitude, and start the task again.

 

Ideally, for some of my applications, it would be nice to be able to generate a basic waveform scaled to +/- 1V and then have a property that I can write to while the task is running to set the gain.

When I want to do an installation build of my project, I have to include the whole NI-daqmx into my build in order to insert my (in this case) USB-6251-driver. Thus my install package expands from about 150 MB to more than 1 GB. This is way to much!

 

It would be nice to be able to choose only the wanted driver (in my example the NI-6251 and the SCC68) in the "adding additional driver's" menu and just add this one to the distribution instead of "adding them all".

I need to frequently check the existence of an overtemperature or any health parameters of the NI card PICe-6323 for my application.

I am using the DAQmx ANSI C library for my application.

 

I have tried using the DAQmxGetReadOvertemperatureChansExist function but found that's for C Series Devices.

 

Please help me out.

Counter tasks can only take 1 channel, due to the nature of timed signals, obviously. When setting up a system with 16 DUTs with counter outputs, this requires 16 tasks. Every single one has to be painstakingly created and configured. (As an aside: Defining a tabulator sequence still seems a mystery to NI's programmers, even though LabVIEW supports this)

Wouldn't it be nice to have a Ctrl+c,Ctrl+v sequence for tasks and then only modify physical channel? IMHO: yes.

 

KR

nimic

The DAQmx API is extremely useful; one especially useful part of the API is the automatic logging feature. This part of the API is efficient, easy to set-up, and largely bug free, well-done NI.

 

One problem with the automatic logging feature is the value of the t0. This value is determined by the system clock, which is the clock onboard the controller. A lot of PXI systems have the ability to use GPS modules or other timing modules. It would be good to use this clock instead.

 

In NI-Sync we can create an event at a specific time and use this to trigger the DAQmx data acquisition. It would be nice to use this "event time" instead of the system clock. There is a property in the DAQmx Timing Property Node, under Advanced, called First Sample Timestamp:Value Property. However, this property is read only, please change it to writable also. In this case we can then write an exact GPS time start to the data acquisition.

 

Below is one simple use case of the property node.

 

mcduff

snip.png

 

 

 

The term "Incomplete Sample Detection" comes from DAQmx Help.  It affects buffered time measurement tasks on X-series boards, the 661x counter/timers, and many 91xx series cDAQ chassis.  It is meant to be a feature, but it can also be a real obstacle.

 

How the feature works ideally: Suppose you want to configure a counter task to measure buffered periods of a 1-channel encoder.  You use implicit timing because the signal being measured *is* the sample clock.  The 1st "sample clock" occurs on the 1st encoder edge after task start, but the time period it measures won't represent a complete encoder interval.  Reporting this 1st sample could be misleading as it measures the arbitrary time from the software call to start the task until the next encoder edge.

   On newer hardware with the "Incomplete Sample Detection" feature, this meaningless 1st sample is discarded by DAQmx.  On older hardware, this 1st sample was returned to the app, and it was up to the app programmer to deal with it.

 

Problem 1: Now suppose I'm also using this same encoder signal as an external sample clock for an AI task that I want to sync with my period measurement task.  Since DAQmx is going to discard the counter sample that came from the 1st edge, my first 5 samples will correspond to edges 2-6.  Over on the AI task, my first 5 samples will correspond to edges 1-5.

   My efforts to sync my tasks are now thwarted because their data streams start out misaligned.  The problem and workaround I'm left with are at least as troublesome as the one that was "solved" by this feature.

 

Problem 2:  Suppose I had a system where my period measurement task also had an arm-start trigger, and I depended on a cumulative sum of periods to be my master time for the entire system.  In this case, the 1st sample is the time from the arm-start trigger to the 1st encoder edge, and it is *entirely* meaningful.  On newer hardware, DAQmx will discard it and I'll have *no way* to know my timing relative to this trigger. 

   Older boards (M-series, 660x counter/timers) could handle this situation just fine. On newer boards, I'm stuck with a much bigger problem than the one that the feature was meant to solve.

 

So can we please have a DAQmx property that allows us to turn this "feature" OFF?  I understand that it'd have to be ON by default so as not to break existing code.

 

 

-Kevin P

The vast majority of my working life is spent with RIO devices or midrange X series cards, but I often come across applications where an inexpensive, reliable DAQ would be handy for low level tasks - monitoring presence sensors, measuring voltages at moderate precision and slow speed, providing interlocks for material storage bins etc.

 

Traditionally, you'll see a lot of USB 600X units being used for applications like these. However, running on USB has a few associated problems: unreliability of the Windows bus, cable strain relief on USB connectors, mounting of USB 600X units, connection type. Don't get me wrong, you can do a lot with these units but they're not an ideal, inexpensive solution for production processes.

 

There's a jump between the functionality of these USB units and X (or even M or E for the vintage crowd) series cards. The only thing that's really in that range anymore is the B series PCI-6010 card, which has the fantastic benefit of using a 37W DSUB connector too, but is a little limited in terms of channel offerings and the like.

 

I'd like to see the B series range revived to provide products that fit between the PCIe-6320 and the USB 600X devices, providing non-USB connection and preferably with a DSUB backplane connector for cost and ease of use. This would provide a more reliable offering for simple acquisition tasks in the industrial environment at a cost-effective price point.

We mostly develop PXIe based high speed (RF) applictions which stores data on one or more RAIDs.

Several customers already asked for a high speed ethernet connection do move this data over the net.

 

Yet there is only one PXIe 10 GBE availible and it is NOT from NI.

We would already need a 40 GBE solution the comming year.

 

PCI Express 40 GBE ist almost commonly avalilible, a mezzanine board solution would be sufficient if nothing else works.

But there is no carrier board availibe, too.

 

I feel kind of left alone with all this data, waiting on those bigg RAIDs for beeing processed / copied.

 

 

With NI 9234 board you can use 4 IEPE sensors but you don' have IEPE open/short detection capability.

NI 9232 board has IEPE open/short detection capability but has only 3 channels.

 

I think that a board with 4 channels (as 9234) and an IEPE open/short detection capability would be great!

NI provides some 100-Pin-DAQ devices, e.g. one for INDUSTRIAL DIGITAL IO

https://www.ni.com/en-us/shop/model/pci-6515.html

 

But why doesn't you offer also a basic connector block for a reasonable price, especially for industrial applictations, where it is common to wire (DIO) signals through DIN rail mounted terminal blocks?

 

This connector block should have the following features:

 

- DIN rail mountable

- simple wire connection, best with spring terminals

- 100 Pin-cable connection

      (https://www.ni.com/en-us/support/model.sh100m-100m-flex-cable.html)

- relatively small for installation in a switch cabinet

- no signal conditioning, just clamps

- much cheaper than then currently available SCB-100 block

 

Please see also this related idea:

http://forums.ni.com/t5/Data-Acquisition-Idea-Exchange/Terminal-Block-layouts/idi-p/2160542

 

Regards

A-T-R

 

The possibility to use simulated devices, so that you can design software without having the hardware available is very nice.  Sometimes, specific signal profiles are needed.  It can be tested using additional software, but you really have to change the software (add test-software in the code).  In some cases this is not wanted.

Therefore adding in DAQmx a possibility to force specific output can be very helpful.  Different possibilities exist (TDMS-files, LlabVIEW(/compiled LabVIEW)-code, ...).  Different people will want different possibilities, but some extra possibilities are useful.